The N-terminal Amphipathic α-Helix of Viperin Mediates Localization to the Cytosolic Face of the Endoplasmic Reticulum and Inhibits Protein Secretion*S⃞
نویسندگان
چکیده
Viperin is an evolutionarily conserved interferon-inducible protein that localizes to the endoplasmic reticulum (ER) and inhibits a number of DNA and RNA viruses. In this study, we report that viperin specifically localizes to the cytoplasmic face of the ER and that an amphipathic alpha-helix at its N terminus is necessary for the ER localization of viperin and sufficient to promote ER localization of a reporter protein, dsRed. Overexpression of intact viperin but not the amphipathic alpha-helix fused to dsRed induced crystalloid ER. Consistent with other proteins that induce crystalloid ER, viperin self-associates, and it does so independently of the amphipathic alpha-helix. Viperin expression also affected the transport of soluble but not membrane-associated proteins. Expression of intact viperin or an N-terminal alpha-helix-dsRed fusion protein significantly reduced secretion of soluble alkaline phosphatase and reduced its rate of ER-to-Golgi trafficking. Similarly, viperin expression inhibited bulk protein secretion and secretion of endogenous alpha(1)-antitrypsin and serum albumin from HepG2 cells. Converting hydrophobic residues in the N-terminal alpha-helix to acidic residues partially or completely restored normal transport of soluble alkaline phosphatase, suggesting that the extended amphipathic nature of the N-terminal alpha-helical domain is essential for inhibiting protein secretion.
منابع مشابه
The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic alpha-helix.
Lipid droplets are intracellular lipid-storage organelles that are thought to be derived from the endoplasmic reticulum (ER). Several pathogens, notably hepatitis C virus, use lipid droplets for replication. Numerous questions remain about how lipid droplets are generated and used by viruses. Here we show that the IFN-induced antiviral protein viperin, which localizes to the cytosolic face of t...
متن کاملLipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion.
The homotypic fusion of endoplasmic reticulum (ER) membranes is mediated by atlastin (ATL), which consists of an N-terminal cytosolic domain containing a GTPase module and a three-helix bundle followed by two transmembrane (TM) segments and a C-terminal tail (CT). Fusion depends on a GTP hydrolysis-induced conformational change in the cytosolic domain. Here, we show that the CT and TM segments ...
متن کاملEndoplasmic reticulum stress regulates inflammation in adipocyte of obese rats via toll-like receptors 4 signaling
Objective(s): To explore whether endoplasmic reticulum (ER) stress regulates inflammation in adipose tissue of obese rats via TLR4 signaling. Materials and Methods: Sprague Dawley rats were randomly divided into four groups, and body weight, food intake, and free fatty acids (FFA) were measured. Real-time PCR and Western blot were used to determine mRNA or protein expression of TLR4, TRAF6, IKK...
متن کاملEquine viperin restricts equine infectious anemia virus replication by inhibiting the production and/or release of viral Gag, Env, and receptor via distortion of the endoplasmic reticulum.
UNLABELLED Viperin is an endoplasmic reticulum (ER)-associated multifunctional protein that regulates virus replication and possesses broad antiviral activity. In many cases, viperin interferes with the trafficking and budding of viral structural proteins by distorting the membrane transportation system. The lentivirus equine infectious anemia virus (EIAV) has been studied extensively. In this ...
متن کاملCytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes
Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Biological Chemistry
دوره 284 شماره
صفحات -
تاریخ انتشار 2009